Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38255008

RESUMO

Voltage-gated sodium channels (VGSCs) are responsible for the initiation and propagation of action potentials in the brain and muscle. Pathogenic variants in genes encoding VGSCs have been associated with severe disorders including epileptic encephalopathies and congenital myopathies. In this study, we identified pathogenic variants in genes encoding the α subunit of VGSCs in the fetuses of two unrelated families with the use of trio-based whole exome sequencing, as part of a larger cohort study. Sanger sequencing was performed for variant confirmation as well as parental phasing. The fetus of the first family carried a known de novo heterozygous missense variant in the SCN2A gene (NM_001040143.2:c.751G>A p.(Val251Ile)) and presented intrauterine growth retardation, hand clenching and ventriculomegaly. Neonatally, the proband also exhibited refractory epilepsy, spasms and MRI abnormalities. The fetus of the second family was a compound heterozygote for two parentally inherited novel missense variants in the SCN4A gene (NM_000334.4:c.4340T>C, p.(Phe1447Ser), NM_000334.4:c.3798G>C, p.(Glu1266Asp)) and presented a severe prenatal phenotype including talipes, fetal hypokinesia, hypoplastic lungs, polyhydramnios, ear abnormalities and others. Both probands died soon after birth. In a subsequent pregnancy of the latter family, the fetus was also a compound heterozygote for the same parentally inherited variants. This pregnancy was terminated due to multiple ultrasound abnormalities similar to the first pregnancy. Our results suggest a potentially crucial role of the VGSC gene family in fetal development and early lethality.


Assuntos
Anormalidades Múltiplas , Canalopatias , Feminino , Gravidez , Humanos , Estudos de Coortes , Vitaminas , Canais de Sódio , Feto/diagnóstico por imagem , Canal de Sódio Disparado por Voltagem NAV1.4
2.
Mol Cytogenet ; 16(1): 8, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217936

RESUMO

BACKGROUND: Hereditary multiple exostoses (HME) is an autosomal dominant skeletal disorder characterized by the development of multiple, circumscript and usually symmetric bony protuberances called osteochondromas. Most HME are caused by EXT1 and EXT2 loss of function mutations. Most pathogenic mutations are nonsense followed by missense mutations and deletions. CASE PRESENTATION: Here we report on a patient with a rare and complex genotype resulting in a typical HME phenotype. Initial point mutation screening in EXT1 and EXT2 genes by Sanger sequencing did not reveal any pathogenic variants. The patient along with the healthy parents was subsequently referred for karyotype and array-Comparative Genomic Hybridization (CGH) analyses. Chromosomal analysis revealed two independent de novo apparently balanced rearrangements: a balanced translocation between the long arms of chromosomes 2 and 3 at breakpoints 2q22 and 3q13.2 and a pericentric inversion with breakpoints at 8p23.1q24.1. Both breakpoints were confirmed by Fluorescence In Situ Hybridization (FISH). Subsequently, array-CGH revealed a novel heterozygous deletion within the EXT1 gene at one of the inversion breakpoints, rendering the inversion unbalanced. The mode of inheritance, as well as the size of the deletion were further investigated by Quantitative Real-time PCR (qPCR), defining the deletion as de novo and of 3.1 kb in size, removing exon 10 of EXT1. The inversion in combination with the 8p23.1 deletion most likely abolishes the transcription of EXT1 downstream of exon 10 hence resulting in a truncated protein. CONCLUSIONS: The identification of a rare and novel genetic cause of HME, highlights the importance of additional comprehensive investigation of patients with typical clinical manifestations, even when EXT1 and EXT2 mutation analysis is negative.

3.
Eur J Med Genet ; 63(12): 104084, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33045407

RESUMO

Williams-Beuren syndrome (WBS) is a rare neurodevelopmental disorder characterized by supravalvular aortic stenosis (SVAS), intellectual disability, overfriendliness and dysmorphic features. It is typically caused by 1.5-1.8 Mb deletions on 7q11.23. The 22q11.21 microduplication syndrome has a variable phenotype and is frequently associated with congenital heart disease. Here we present a unique patient, carrying aberrations within both of the above syndrome regions, referred for possible diagnosis of WBS because of SVAS. The patient was a boy who died suddenly 47 days after birth, possibly due to cardiac complications. Genetic testing was carried out, including array Comparative Genomic Hybridization (aCGH), Fluorescence In situ Hybridization (FISH) and Multiplex Ligation-Dependent Probe Amplification (MLPA) showing that the proband was heterozygous for a novel and atypical 0.3 Mb deletion in WBS region (7q11.23) encompassing the ELN gene. In addition, he was found heterozygous for a 22q11.21 microduplication. Parental studies revealed that the 7q11.23 deletion was inherited from the mother who also exhibited a cardiovascular phenotype, however very mild. The same maternally inherited deletion was detected in one of the proband's siblings, born two years later with a less severe SVAS. The 22q11.2 microduplication was de novo in origin. Detection and investigation of atypical deletions within known syndrome regions are crucial for better genotype-phenotype correlations and more accurate characterization of critical regions. The combined effect of two different genetic defects - one in a known syndrome region and one with variable clinical significance, is valuable for revealing gene interactions and enabling more accurate predictions, especially in prenatal diagnosis.


Assuntos
Anormalidades Múltiplas/genética , Estenose Aórtica Supravalvular/genética , Duplicação Cromossômica/genética , Síndrome de DiGeorge/genética , Síndrome de Williams/genética , Anormalidades Múltiplas/patologia , Adulto , Estenose Aórtica Supravalvular/patologia , Cromossomos Humanos Par 22/genética , Síndrome de DiGeorge/patologia , Feminino , Humanos , Lactente , Padrões de Herança , Masculino , Síndrome de Williams/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...